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A RELATIONSHIP BETWEEN GENERALIZED AND INTEGRATED

MEAN SQUARED ERRORS

J. L. Hess and R. F. Gunst
Kansas State University Southern Methodist University
Manhattan, Kansas U.S.A. Dallas, Texas U.S.A.

SUMMARY

Generalized mean squared error is a flexible measure of the adequacy

of a regression estimator. It allows specific characteristics of the

regression model and its intended use to be incorporated in the measure

itself. Similarly, integrated mean squared error enables a researcher to

stipulate particular regions of interest and weighting functions in the

assessment of a prediction equation. The appeal of both measures is their

ability to allow design or model characteristics to directly influence the

evaluation of fitted regression models . In this note an equivalence of

the two measures is established for correctly specified models.

Keywords: Regression models; biased estimation; generalized mean squared

error; integrated mean squared error
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1. INTRODUCTION

Define a multiple linear regression model as

(1)

where ? is an (nxl) vector of response variables, 1 is an (nXl) vector of

ones, X is an (nXp) full-column-rank matrix of known constants (predictor

variables) that is standardized so that XI X is in correlation form, 80 is

an unknown constant, B is a (pxl) vector of unknown regression coefficients,

and ~ “ N(o,0
21) is an (nXl) vector of unobservable random error terms. We

seek a prediction equation for the response variable of the form

= 

~o ÷ u ’~ , (2)

where U is a (pxl) vector of standardized predictor variables, = Y, and

B is a suitable estimator of 8. By far the most often utilized estimator

of B is the least squares estimator.

Biased regression estimators are popular alternatives to least

squares when predictor variables are multicollinear. Two widely-used biased

estimators are the principal component (Massy (1965), Marquardt (1970)) and

(simple) ridge regression (Hoerl and Kennard (1970)) estimators. These

estimators are generally compared with least squares and one another on the

basis of their (total) mean squared errors,

T = E E ( 8  — 
~) ‘ ( 8  — B)] . -(3)

Responding to criticism that this criterion is an overly restrictive

measure of the adequacy of a regression estimator, Theobald (1974)
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investigated generalized mean squared errors of least squares and ridge

regression estimators. Generalized mean squared error is defined as

G = E [ ( ~ — B)’M (B — B)], (4)

for nonnegative definite matrices M. The addition of the matrix M in the

definition of generalized mean squared error allows a researcher the

flexibility of stressing specific linear combinations or individual elements

of B more heavily than others in the computation of G.

Theobald (1974) showed that a range of values of k, the ridge parain-

eter, exists which guarantees that the ridge estimator has smaller general-

ized mean squared error than least squares for all choices of M. He also

found sufficient conditions for the ridge estimator to have smaller general—

ized mean squared error than least squares for all M. The implication of

this result is that if the ridge parameter satisfies the sufficient con-

ditions, all linear combinations of the regression coefficients can be

estimated with smaller mean squared error using ridge regression than least

squares.

Extending Theobald’s results, Gunst and Mason (1976) derived sufficient

conditions for the principal component estimator to have smaller generalized

mean squared error than least squares for all M. There is not an existence

theorem similar to that for ridge regression which guarantees that a prin-

cipal component estimator can always be found which has smaller generalized

mean squared error than least squares for all choices of M. Gunst and Mason

(1976) also show that neither principal components nor ridge regression

dominates the other in generalized mean squared error for all choices of M.
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Box and Draper (1959) stimulated a series of papers by several authors

on the use of integrated mean squared error as a criterion for evaluating

various designs for fitting response surface models. Integrated mean squared

error is defined as

= f.....f E{(Y (u)-E [Y(u)])2} W(u)du. (5)

As defined in (5), integrated mean squared error incorporates the mean

squared error of the prediction equation at a point U c R, weighted by a

function W(u), and integrated over a region R of interest to the researcher.

Since the researcher can define a weight function and region of interest to

suit the purpose of his investigations, integrated mean squared error offers

the type of generality and flexibility in the evaluation of prediction

equations as generalized mean squared error does for regression estimators.

Gunst and Mason (1979) adopted integrated mean squared error as a

criterion for the assessment of prediction equations for which the matrix

of predictor variables is fixed but one can choose which regression estimator

to use. Specifically, integrated mean squared error was employed to evaluate

competing prediction equations based on least squares, principal component,

and ridge regression estimators when the matrix of predictor variables is

multicollinear. We now wish to identify conditions for which the two model-

fitting criteria are equivalent.

2. AN EQUIVALENCE RELATIONSHIP

Helms (1971) shows that integrated mean squared error, J, is affected

by the weight function and the region of interest only through the second

order moment matrix 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ..- — 3.
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= f...f uu’W (u)du . (6)

We now propose the following theorem.

Theorem: If a multiple linear regression model is correctly specified

as in (1),

when M~~~~.

Proof: J = f . f  E{(Y(u)—E[Y(u)])2} W(u)du

= E{f” J (1 — 8~)
2 
W (u) du)

+ 2E{J ..sf (Y — 80
) ‘

~~ 
- u~~) W(u)du}

+ E {f ” .f  (u’B - u’B)
2 W (u)du)

R

= ~—l~2 + E{(~ 
— B) ’~~(~ 

—

An important consequence of this theorem is that the existence and

sufficient conditions established by Theobald (1974) for the ridge estimator

to have smaller generalized mean squared error than least squares for all

choices of M now guarantee that under those same conditions the integrated

mean squared error of the ridge prediction equation is less than that for

least squares with all choices of W(u) and R that produce nonnegative

S definite second order moment matrices. Similar equivalence relationships

hold for the generalized mean squared error properties established in Gunst

• and Mason (1976).
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